12tqian's Competitive Programming Library

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub 12tqian/cp-library

:heavy_check_mark: verify/yosupo/yosupo-min_cost_b_flow.test.cpp

Depends on

Code

#define PROBLEM "https://judge.yosupo.jp/problem/min_cost_b_flow"

#include <bits/stdc++.h>
#include "../../library/graphs/flows/min-cost-b-flow.hpp"

template <class T> std::string i2s(T value) {
    if (value < 0) return "-" + i2s(-value);
    if (value == 0) return "0";
    std::string s;
    while (value) {
        s += '0' + (value % 10);
        value /= 10;
    }
    std::reverse(s.begin(), s.end());
    return s;
}

int main() {
	using MCF = MinCostFlow<long long, long long>;
	using namespace std;
	int n, m;
	cin >> n >> m;
	MCF mcf;
	const auto vs = mcf.add_vertices(n);
	for (const auto& v : vs) {
		int x;
		cin >> x;
		mcf.add_supply(vs[v], x);
	}
	vector<MCF::EdgePtr> edges;
	while (m--) {
		int s, t, l, u, c;
		cin >> s >> t >> l >> u >> c;
		edges.emplace_back(mcf.add_edge(s, t, l, u, c));
	}
	const auto status = mcf.solve().first;
	if (status == Status::INFEASIBLE) {
		puts("infeasible");
	} else {
		const auto potential = mcf.get_potential();
		const auto result_value = mcf.get_result_value<__int128_t>();
		puts(i2s(result_value).c_str());
		for (const auto& v : vs) {
			puts(i2s(potential[v]).c_str());
		}
		for (const auto& e : edges) {
			puts(i2s(e.flow()).c_str());
		}
	}
}
#define PROBLEM "https://judge.yosupo.jp/problem/min_cost_b_flow"

#include <bits/stdc++.h>

enum Objective {
	MINIMIZE = 1,
	MAXIMIZE = -1,
};

enum class Status {
	OPTIMAL,
	INFEASIBLE,
};

template <class Flow, class Cost, Objective objective = Objective::MINIMIZE, Flow SCALING_FACTOR = 2>
class MinCostFlow {
	using V_id = uint32_t;
	using E_id = uint32_t;

	class Edge {
		friend class MinCostFlow;

		V_id src, dst;
		Flow flow, cap;
		Cost cost;
		E_id rev;

	public:
		Edge() = default;

		Edge(const V_id _src, const V_id _dst, const Flow _cap, const Cost _cost,
			 const E_id _rev)
			: src(_src), dst(_dst), flow(0), cap(_cap), cost(_cost), rev(_rev) {}

		[[nodiscard]] Flow residual_cap() const { return cap - flow; }
	};

public:
	class EdgePtr {
		friend class MinCostFlow;

		const MinCostFlow* instance;

		V_id v;
		E_id e;

		EdgePtr(const MinCostFlow* const _instance, const V_id _v, const E_id _e)
			: instance(_instance), v(_v), e(_e) {}

		[[nodiscard]] const Edge& edge() const { return instance->g[v][e]; }

		[[nodiscard]] const Edge& rev() const {
			const Edge& _e = edge();
			return instance->g[_e.dst][_e.rev];
		}

	public:
		EdgePtr() = default;

		[[nodiscard]] V_id src() const { return v; }

		[[nodiscard]] V_id dst() const { return edge().dst; }

		[[nodiscard]] Flow flow() const { return edge().flow; }

		[[nodiscard]] Flow lower() const { return -rev().cap; }

		[[nodiscard]] Flow upper() const { return edge().cap; }

		[[nodiscard]] Cost cost() const { return edge().cost; }

		[[nodiscard]] Cost gain() const { return -edge().cost; }
	};

private:
	V_id n;
	std::vector<std::vector<Edge>> g;
	std::vector<Flow> b;

public:
	MinCostFlow() : n(0) {}

	V_id add_vertex() {
		++n;
		g.resize(n);
		b.resize(n);
		return n-1;
	}

	std::vector<V_id> add_vertices(const size_t size) {
		std::vector<V_id> ret(size);
		std::iota(std::begin(ret), std::end(ret), n);
		n += size;
		g.resize(n);
		b.resize(n);
		return ret;
	}

	EdgePtr add_edge(const V_id src, const V_id dst, const Flow lower,
					 const Flow upper, const Cost cost) {
		const E_id e = g[src].size(), re = src == dst ? e + 1 : g[dst].size();
		assert(lower <= upper);
		g[src].emplace_back(Edge{src, dst, upper, cost * objective, re});
		g[dst].emplace_back(Edge{dst, src, -lower, -cost * objective, e});
		return EdgePtr{this, src, e};
	}

	void add_supply(const V_id v, const Flow amount) { b[v] += amount; }

	void add_demand(const V_id v, const Flow amount) { b[v] -= amount; }

private:
	// Variables used in calculation

	const Cost unreachable = std::numeric_limits<Cost>::max();
	Cost farthest;
	std::vector<Cost> potential;
	std::vector<Cost> dist;
	std::vector<Edge*> parent; // out-forest.

	std::priority_queue<std::pair<Cost, int>, std::vector<std::pair<Cost, int>>,
		std::greater<>>
			pq; // should be empty outside of dual()

	std::vector<V_id> excess_vs, deficit_vs;

	Edge& rev(const Edge& e) { return g[e.dst][e.rev]; }

	void push(Edge& e, const Flow amount) {
		e.flow += amount;
		g[e.dst][e.rev].flow -= amount;
	}

	Cost residual_cost(const V_id src, const V_id dst, const Edge& e) {
		return e.cost + potential[src] - potential[dst];
	}

	bool dual(const Flow delta) {
		dist.assign(n, unreachable);
		parent.assign(n, nullptr);
		excess_vs.erase(std::remove_if(std::begin(excess_vs), 
										std::end(excess_vs),
										[&](const V_id v) { return b[v] < delta; }),
										std::end(excess_vs));
		deficit_vs.erase(std::remove_if(std::begin(deficit_vs),
										std::end(deficit_vs),
										[&](const V_id v) { return b[v] > -delta; }),
						 				std::end(deficit_vs));
		for (const auto v : excess_vs) pq.emplace(dist[v] = 0, v);
		farthest = 0;
		std::size_t deficit_count = 0;
		while (!pq.empty()) {
			Cost d;
			std::size_t u;
			std::tie(d, u) = pq.top();
			pq.pop();
			if (dist[u] < d) continue;
			farthest = d;
			if (b[u] <= -delta) ++deficit_count;
			if (deficit_count >= deficit_vs.size()) break;
			for (auto& e : g[u]) {
				if (e.residual_cap() < delta) continue;
				const auto v = e.dst;
				const auto new_dist = d + residual_cost(u, v, e);
				if (new_dist >= dist[v]) continue;
				pq.emplace(dist[v] = new_dist, v);
				parent[v] = &e;
			}
		}
		pq = decltype(pq)(); // pq.clear() doesn't exist.

		for (V_id v = 0; v < n; ++v) {
			potential[v] += std::min(dist[v], farthest);
		}
		return deficit_count > 0;
	}

	void primal(const Flow delta) {
		for (const auto t : deficit_vs) {
			if (dist[t] > farthest) continue;
			Flow f = -b[t];
			V_id v;
			for (v = t; parent[v] != nullptr; v = parent[v]->src) {
				f = std::min(f, parent[v]->residual_cap());
			}
			f = std::min(f, b[v]);
			f -= f % delta;
			if (f <= 0) continue;
			for (v = t; parent[v] != nullptr;) {
				auto& e = *parent[v];
				push(e, f);
				int u = parent[v]->src;
				if (e.residual_cap() <= 0) parent[v] = nullptr;
				v = u;
			}
			b[t] += f;
			b[v] -= f;
		}
	}

	void saturate_negative(const Flow delta) {
		excess_vs.clear();
		deficit_vs.clear();
		for (auto& es : g) for (auto& e : es) {
			Flow rcap = e.residual_cap();
			rcap -= rcap % delta;
			const Cost rcost = residual_cost(e.src, e.dst, e);
			if (rcost < 0 || rcap < 0) {
				push(e, rcap);
				b[e.src] -= rcap;
				b[e.dst] += rcap;
			}
		}
		for (V_id v = 0; v < n; ++v) if (b[v] != 0) {
			(b[v] > 0 ? excess_vs : deficit_vs).emplace_back(v);
		}
	}

public:
	std::pair<Status, Cost> solve() {
		potential.resize(n);
		Flow inf_flow = 1;
		for (const auto t : b)
			inf_flow = std::max({inf_flow, t, -t});
		for (const auto& es : g) for (const auto& e : es)
			inf_flow = std::max({inf_flow, e.residual_cap(), -e.residual_cap()});
		Flow delta = 1;
		while (delta < inf_flow) delta *= SCALING_FACTOR;
		for (; delta; delta /= SCALING_FACTOR) {
			saturate_negative(delta);
			while (dual(delta)) primal(delta);
		}
		Cost value = 0;
		for (const auto& es : g) for (const auto& e : es) {
			value += e.flow * e.cost;
		}
		value /= 2;
		if (excess_vs.empty() && deficit_vs.empty()) {
			return { Status::OPTIMAL, value / objective };
		} else {
			return { Status::INFEASIBLE, value / objective };
		}
	}

	std::vector<Cost> get_potential() {
		// Not strictly necessary, but re-calculate potential to bound the potential values,

		// plus make them somewhat canonical so that it is robust for the algorithm chaneges.

		std::fill(std::begin(potential), std::end(potential), 0);
		for (size_t i = 0; i < n; ++i) for (const auto& es : g) for (const auto& e : es)
			if (e.residual_cap() > 0) potential[e.dst] = std::min(potential[e.dst], potential[e.src] + e.cost);
		return potential;
	}

	template <class T> T get_result_value() {
		T value = 0;
		for (const auto& es : g) for (const auto& e : es) {
			value += (T)(e.flow) * (T)(e.cost);
		}
		value /= (T)2;
		return value;
	}
	
	std::vector<size_t> get_cut() {
		std::vector<size_t> res;
		if (excess_vs.empty()) return res;
		for (size_t v = 0; v < n; ++v) {
			if (deficit_vs.empty() || (dist[v] < unreachable))
				res.emplace_back(v);
		}
		return res;
	}
};

template <class T> std::string i2s(T value) {
    if (value < 0) return "-" + i2s(-value);
    if (value == 0) return "0";
    std::string s;
    while (value) {
        s += '0' + (value % 10);
        value /= 10;
    }
    std::reverse(s.begin(), s.end());
    return s;
}

int main() {
	using MCF = MinCostFlow<long long, long long>;
	using namespace std;
	int n, m;
	cin >> n >> m;
	MCF mcf;
	const auto vs = mcf.add_vertices(n);
	for (const auto& v : vs) {
		int x;
		cin >> x;
		mcf.add_supply(vs[v], x);
	}
	vector<MCF::EdgePtr> edges;
	while (m--) {
		int s, t, l, u, c;
		cin >> s >> t >> l >> u >> c;
		edges.emplace_back(mcf.add_edge(s, t, l, u, c));
	}
	const auto status = mcf.solve().first;
	if (status == Status::INFEASIBLE) {
		puts("infeasible");
	} else {
		const auto potential = mcf.get_potential();
		const auto result_value = mcf.get_result_value<__int128_t>();
		puts(i2s(result_value).c_str());
		for (const auto& v : vs) {
			puts(i2s(potential[v]).c_str());
		}
		for (const auto& e : edges) {
			puts(i2s(e.flow()).c_str());
		}
	}
}
Back to top page