This documentation is automatically generated by online-judge-tools/verification-helper
#include "library/graphs/flows/min-cost-b-flow.hpp"
#pragma once
enum Objective {
MINIMIZE = 1,
MAXIMIZE = -1,
};
enum class Status {
OPTIMAL,
INFEASIBLE,
};
template <class Flow, class Cost, Objective objective = Objective::MINIMIZE, Flow SCALING_FACTOR = 2>
class MinCostFlow {
using V_id = uint32_t;
using E_id = uint32_t;
class Edge {
friend class MinCostFlow;
V_id src, dst;
Flow flow, cap;
Cost cost;
E_id rev;
public:
Edge() = default;
Edge(const V_id _src, const V_id _dst, const Flow _cap, const Cost _cost,
const E_id _rev)
: src(_src), dst(_dst), flow(0), cap(_cap), cost(_cost), rev(_rev) {}
[[nodiscard]] Flow residual_cap() const { return cap - flow; }
};
public:
class EdgePtr {
friend class MinCostFlow;
const MinCostFlow* instance;
V_id v;
E_id e;
EdgePtr(const MinCostFlow* const _instance, const V_id _v, const E_id _e)
: instance(_instance), v(_v), e(_e) {}
[[nodiscard]] const Edge& edge() const { return instance->g[v][e]; }
[[nodiscard]] const Edge& rev() const {
const Edge& _e = edge();
return instance->g[_e.dst][_e.rev];
}
public:
EdgePtr() = default;
[[nodiscard]] V_id src() const { return v; }
[[nodiscard]] V_id dst() const { return edge().dst; }
[[nodiscard]] Flow flow() const { return edge().flow; }
[[nodiscard]] Flow lower() const { return -rev().cap; }
[[nodiscard]] Flow upper() const { return edge().cap; }
[[nodiscard]] Cost cost() const { return edge().cost; }
[[nodiscard]] Cost gain() const { return -edge().cost; }
};
private:
V_id n;
std::vector<std::vector<Edge>> g;
std::vector<Flow> b;
public:
MinCostFlow() : n(0) {}
V_id add_vertex() {
++n;
g.resize(n);
b.resize(n);
return n-1;
}
std::vector<V_id> add_vertices(const size_t size) {
std::vector<V_id> ret(size);
std::iota(std::begin(ret), std::end(ret), n);
n += size;
g.resize(n);
b.resize(n);
return ret;
}
EdgePtr add_edge(const V_id src, const V_id dst, const Flow lower,
const Flow upper, const Cost cost) {
const E_id e = g[src].size(), re = src == dst ? e + 1 : g[dst].size();
assert(lower <= upper);
g[src].emplace_back(Edge{src, dst, upper, cost * objective, re});
g[dst].emplace_back(Edge{dst, src, -lower, -cost * objective, e});
return EdgePtr{this, src, e};
}
void add_supply(const V_id v, const Flow amount) { b[v] += amount; }
void add_demand(const V_id v, const Flow amount) { b[v] -= amount; }
private:
// Variables used in calculation
const Cost unreachable = std::numeric_limits<Cost>::max();
Cost farthest;
std::vector<Cost> potential;
std::vector<Cost> dist;
std::vector<Edge*> parent; // out-forest.
std::priority_queue<std::pair<Cost, int>, std::vector<std::pair<Cost, int>>,
std::greater<>>
pq; // should be empty outside of dual()
std::vector<V_id> excess_vs, deficit_vs;
Edge& rev(const Edge& e) { return g[e.dst][e.rev]; }
void push(Edge& e, const Flow amount) {
e.flow += amount;
g[e.dst][e.rev].flow -= amount;
}
Cost residual_cost(const V_id src, const V_id dst, const Edge& e) {
return e.cost + potential[src] - potential[dst];
}
bool dual(const Flow delta) {
dist.assign(n, unreachable);
parent.assign(n, nullptr);
excess_vs.erase(std::remove_if(std::begin(excess_vs),
std::end(excess_vs),
[&](const V_id v) { return b[v] < delta; }),
std::end(excess_vs));
deficit_vs.erase(std::remove_if(std::begin(deficit_vs),
std::end(deficit_vs),
[&](const V_id v) { return b[v] > -delta; }),
std::end(deficit_vs));
for (const auto v : excess_vs) pq.emplace(dist[v] = 0, v);
farthest = 0;
std::size_t deficit_count = 0;
while (!pq.empty()) {
Cost d;
std::size_t u;
std::tie(d, u) = pq.top();
pq.pop();
if (dist[u] < d) continue;
farthest = d;
if (b[u] <= -delta) ++deficit_count;
if (deficit_count >= deficit_vs.size()) break;
for (auto& e : g[u]) {
if (e.residual_cap() < delta) continue;
const auto v = e.dst;
const auto new_dist = d + residual_cost(u, v, e);
if (new_dist >= dist[v]) continue;
pq.emplace(dist[v] = new_dist, v);
parent[v] = &e;
}
}
pq = decltype(pq)(); // pq.clear() doesn't exist.
for (V_id v = 0; v < n; ++v) {
potential[v] += std::min(dist[v], farthest);
}
return deficit_count > 0;
}
void primal(const Flow delta) {
for (const auto t : deficit_vs) {
if (dist[t] > farthest) continue;
Flow f = -b[t];
V_id v;
for (v = t; parent[v] != nullptr; v = parent[v]->src) {
f = std::min(f, parent[v]->residual_cap());
}
f = std::min(f, b[v]);
f -= f % delta;
if (f <= 0) continue;
for (v = t; parent[v] != nullptr;) {
auto& e = *parent[v];
push(e, f);
int u = parent[v]->src;
if (e.residual_cap() <= 0) parent[v] = nullptr;
v = u;
}
b[t] += f;
b[v] -= f;
}
}
void saturate_negative(const Flow delta) {
excess_vs.clear();
deficit_vs.clear();
for (auto& es : g) for (auto& e : es) {
Flow rcap = e.residual_cap();
rcap -= rcap % delta;
const Cost rcost = residual_cost(e.src, e.dst, e);
if (rcost < 0 || rcap < 0) {
push(e, rcap);
b[e.src] -= rcap;
b[e.dst] += rcap;
}
}
for (V_id v = 0; v < n; ++v) if (b[v] != 0) {
(b[v] > 0 ? excess_vs : deficit_vs).emplace_back(v);
}
}
public:
std::pair<Status, Cost> solve() {
potential.resize(n);
Flow inf_flow = 1;
for (const auto t : b)
inf_flow = std::max({inf_flow, t, -t});
for (const auto& es : g) for (const auto& e : es)
inf_flow = std::max({inf_flow, e.residual_cap(), -e.residual_cap()});
Flow delta = 1;
while (delta < inf_flow) delta *= SCALING_FACTOR;
for (; delta; delta /= SCALING_FACTOR) {
saturate_negative(delta);
while (dual(delta)) primal(delta);
}
Cost value = 0;
for (const auto& es : g) for (const auto& e : es) {
value += e.flow * e.cost;
}
value /= 2;
if (excess_vs.empty() && deficit_vs.empty()) {
return { Status::OPTIMAL, value / objective };
} else {
return { Status::INFEASIBLE, value / objective };
}
}
std::vector<Cost> get_potential() {
// Not strictly necessary, but re-calculate potential to bound the potential values,
// plus make them somewhat canonical so that it is robust for the algorithm chaneges.
std::fill(std::begin(potential), std::end(potential), 0);
for (size_t i = 0; i < n; ++i) for (const auto& es : g) for (const auto& e : es)
if (e.residual_cap() > 0) potential[e.dst] = std::min(potential[e.dst], potential[e.src] + e.cost);
return potential;
}
template <class T> T get_result_value() {
T value = 0;
for (const auto& es : g) for (const auto& e : es) {
value += (T)(e.flow) * (T)(e.cost);
}
value /= (T)2;
return value;
}
std::vector<size_t> get_cut() {
std::vector<size_t> res;
if (excess_vs.empty()) return res;
for (size_t v = 0; v < n; ++v) {
if (deficit_vs.empty() || (dist[v] < unreachable))
res.emplace_back(v);
}
return res;
}
};
enum Objective {
MINIMIZE = 1,
MAXIMIZE = -1,
};
enum class Status {
OPTIMAL,
INFEASIBLE,
};
template <class Flow, class Cost, Objective objective = Objective::MINIMIZE, Flow SCALING_FACTOR = 2>
class MinCostFlow {
using V_id = uint32_t;
using E_id = uint32_t;
class Edge {
friend class MinCostFlow;
V_id src, dst;
Flow flow, cap;
Cost cost;
E_id rev;
public:
Edge() = default;
Edge(const V_id _src, const V_id _dst, const Flow _cap, const Cost _cost,
const E_id _rev)
: src(_src), dst(_dst), flow(0), cap(_cap), cost(_cost), rev(_rev) {}
[[nodiscard]] Flow residual_cap() const { return cap - flow; }
};
public:
class EdgePtr {
friend class MinCostFlow;
const MinCostFlow* instance;
V_id v;
E_id e;
EdgePtr(const MinCostFlow* const _instance, const V_id _v, const E_id _e)
: instance(_instance), v(_v), e(_e) {}
[[nodiscard]] const Edge& edge() const { return instance->g[v][e]; }
[[nodiscard]] const Edge& rev() const {
const Edge& _e = edge();
return instance->g[_e.dst][_e.rev];
}
public:
EdgePtr() = default;
[[nodiscard]] V_id src() const { return v; }
[[nodiscard]] V_id dst() const { return edge().dst; }
[[nodiscard]] Flow flow() const { return edge().flow; }
[[nodiscard]] Flow lower() const { return -rev().cap; }
[[nodiscard]] Flow upper() const { return edge().cap; }
[[nodiscard]] Cost cost() const { return edge().cost; }
[[nodiscard]] Cost gain() const { return -edge().cost; }
};
private:
V_id n;
std::vector<std::vector<Edge>> g;
std::vector<Flow> b;
public:
MinCostFlow() : n(0) {}
V_id add_vertex() {
++n;
g.resize(n);
b.resize(n);
return n-1;
}
std::vector<V_id> add_vertices(const size_t size) {
std::vector<V_id> ret(size);
std::iota(std::begin(ret), std::end(ret), n);
n += size;
g.resize(n);
b.resize(n);
return ret;
}
EdgePtr add_edge(const V_id src, const V_id dst, const Flow lower,
const Flow upper, const Cost cost) {
const E_id e = g[src].size(), re = src == dst ? e + 1 : g[dst].size();
assert(lower <= upper);
g[src].emplace_back(Edge{src, dst, upper, cost * objective, re});
g[dst].emplace_back(Edge{dst, src, -lower, -cost * objective, e});
return EdgePtr{this, src, e};
}
void add_supply(const V_id v, const Flow amount) { b[v] += amount; }
void add_demand(const V_id v, const Flow amount) { b[v] -= amount; }
private:
// Variables used in calculation
const Cost unreachable = std::numeric_limits<Cost>::max();
Cost farthest;
std::vector<Cost> potential;
std::vector<Cost> dist;
std::vector<Edge*> parent; // out-forest.
std::priority_queue<std::pair<Cost, int>, std::vector<std::pair<Cost, int>>,
std::greater<>>
pq; // should be empty outside of dual()
std::vector<V_id> excess_vs, deficit_vs;
Edge& rev(const Edge& e) { return g[e.dst][e.rev]; }
void push(Edge& e, const Flow amount) {
e.flow += amount;
g[e.dst][e.rev].flow -= amount;
}
Cost residual_cost(const V_id src, const V_id dst, const Edge& e) {
return e.cost + potential[src] - potential[dst];
}
bool dual(const Flow delta) {
dist.assign(n, unreachable);
parent.assign(n, nullptr);
excess_vs.erase(std::remove_if(std::begin(excess_vs),
std::end(excess_vs),
[&](const V_id v) { return b[v] < delta; }),
std::end(excess_vs));
deficit_vs.erase(std::remove_if(std::begin(deficit_vs),
std::end(deficit_vs),
[&](const V_id v) { return b[v] > -delta; }),
std::end(deficit_vs));
for (const auto v : excess_vs) pq.emplace(dist[v] = 0, v);
farthest = 0;
std::size_t deficit_count = 0;
while (!pq.empty()) {
Cost d;
std::size_t u;
std::tie(d, u) = pq.top();
pq.pop();
if (dist[u] < d) continue;
farthest = d;
if (b[u] <= -delta) ++deficit_count;
if (deficit_count >= deficit_vs.size()) break;
for (auto& e : g[u]) {
if (e.residual_cap() < delta) continue;
const auto v = e.dst;
const auto new_dist = d + residual_cost(u, v, e);
if (new_dist >= dist[v]) continue;
pq.emplace(dist[v] = new_dist, v);
parent[v] = &e;
}
}
pq = decltype(pq)(); // pq.clear() doesn't exist.
for (V_id v = 0; v < n; ++v) {
potential[v] += std::min(dist[v], farthest);
}
return deficit_count > 0;
}
void primal(const Flow delta) {
for (const auto t : deficit_vs) {
if (dist[t] > farthest) continue;
Flow f = -b[t];
V_id v;
for (v = t; parent[v] != nullptr; v = parent[v]->src) {
f = std::min(f, parent[v]->residual_cap());
}
f = std::min(f, b[v]);
f -= f % delta;
if (f <= 0) continue;
for (v = t; parent[v] != nullptr;) {
auto& e = *parent[v];
push(e, f);
int u = parent[v]->src;
if (e.residual_cap() <= 0) parent[v] = nullptr;
v = u;
}
b[t] += f;
b[v] -= f;
}
}
void saturate_negative(const Flow delta) {
excess_vs.clear();
deficit_vs.clear();
for (auto& es : g) for (auto& e : es) {
Flow rcap = e.residual_cap();
rcap -= rcap % delta;
const Cost rcost = residual_cost(e.src, e.dst, e);
if (rcost < 0 || rcap < 0) {
push(e, rcap);
b[e.src] -= rcap;
b[e.dst] += rcap;
}
}
for (V_id v = 0; v < n; ++v) if (b[v] != 0) {
(b[v] > 0 ? excess_vs : deficit_vs).emplace_back(v);
}
}
public:
std::pair<Status, Cost> solve() {
potential.resize(n);
Flow inf_flow = 1;
for (const auto t : b)
inf_flow = std::max({inf_flow, t, -t});
for (const auto& es : g) for (const auto& e : es)
inf_flow = std::max({inf_flow, e.residual_cap(), -e.residual_cap()});
Flow delta = 1;
while (delta < inf_flow) delta *= SCALING_FACTOR;
for (; delta; delta /= SCALING_FACTOR) {
saturate_negative(delta);
while (dual(delta)) primal(delta);
}
Cost value = 0;
for (const auto& es : g) for (const auto& e : es) {
value += e.flow * e.cost;
}
value /= 2;
if (excess_vs.empty() && deficit_vs.empty()) {
return { Status::OPTIMAL, value / objective };
} else {
return { Status::INFEASIBLE, value / objective };
}
}
std::vector<Cost> get_potential() {
// Not strictly necessary, but re-calculate potential to bound the potential values,
// plus make them somewhat canonical so that it is robust for the algorithm chaneges.
std::fill(std::begin(potential), std::end(potential), 0);
for (size_t i = 0; i < n; ++i) for (const auto& es : g) for (const auto& e : es)
if (e.residual_cap() > 0) potential[e.dst] = std::min(potential[e.dst], potential[e.src] + e.cost);
return potential;
}
template <class T> T get_result_value() {
T value = 0;
for (const auto& es : g) for (const auto& e : es) {
value += (T)(e.flow) * (T)(e.cost);
}
value /= (T)2;
return value;
}
std::vector<size_t> get_cut() {
std::vector<size_t> res;
if (excess_vs.empty()) return res;
for (size_t v = 0; v < n; ++v) {
if (deficit_vs.empty() || (dist[v] < unreachable))
res.emplace_back(v);
}
return res;
}
};