This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/sort_points_by_argument"
#include "../../library/contest/template-minimal.hpp"
#include "../../library/geometry/geometry-2d.hpp"
using P = Point<long long>;
using namespace Geometry2D;
int half(P x) {
return x.y != 0 ? sign(x.y) : -sign(x.x);
}
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
int n;
cin >> n;
vector<Point<long long>> p(n);
for (int i = 0; i < n; ++i) {
cin >> p[i];
}
sort(p.begin(), p.end(), [&](P a, P b) {
int A = half(a), B = half(b);
return A == B ? cross(a, b) > 0 : A < B;
});
for (int i = 0; i < n; ++i) {
cout << p[i].x << ' ' << p[i].y << '\n';
}
return 0;
}
#define PROBLEM "https://judge.yosupo.jp/problem/sort_points_by_argument"
#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <chrono>
#include <cmath>
#include <complex>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <deque>
#include <iostream>
#include <iomanip>
#include <list>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <stack>
#include <string>
#include <unordered_map>
#include <vector>
using namespace std;
template <typename T> struct Point {
public:
T x, y;
Point() : x(0), y(0) {}
Point(T x_, T y_) : x(x_), y(y_) {}
template <typename U> explicit Point(const Point<U>& p) : x(p.x), y(p.y) {}
Point(const std::pair<T, T>& p) : x(p.first), y(p.second) {}
Point(const std::complex<T>& p) : x(real(p)), y(imag(p)) {}
explicit operator std::pair<T, T>() const { return std::pair<T, T>(x, y); }
explicit operator std::complex<T>() const { return std::complex<T>(x, y); }
friend std::ostream& operator<<(std::ostream &o, const Point& p) {
return o << '(' << p.x << ',' << p.y << ')'; }
friend std::istream& operator>>(std::istream &i, Point& p) { return i >> p.x >> p.y; }
friend bool operator==(const Point& a, const Point& b) { return a.x == b.x && a.y == b.y; }
friend bool operator!=(const Point& a, const Point& b) { return !(a == b); }
friend bool operator<(const Point& a, const Point& b) {
return (a.x != b.x ? a.x < b.x : a.y < b.y); }
friend T norm(const Point& a) { return a.x * a.x + a.y * a.y; }
friend T abs(const Point& p) { return std::hypot(p.x, p.y); }
friend T unit(const Point& a) { if (a == Point()) return a; return a / abs(a); }
friend Point conj(const Point& a) { return Point(a.x, -a.y); }
friend Point perp(const Point& a) { return Point(-a.y, a.x); }
friend long double arg(const Point& p) { return atan2(p.y, p.x); }
friend Point dir(long double angle) { return Point(cos(angle), sin(angle)); }
Point& operator+=(const Point& p) { x += p.x, y += p.y; return *this; }
Point& operator-=(const Point& p) { x -= p.x, y -= p.y; return *this; }
Point& operator*=(const T &t) { x *= t, y *= t; return *this; }
Point& operator/=(const T &t) { x /= t, y /= t; return *this; }
Point& operator*=(const Point& t) {
Point res = Point(x, y) * t; x = res.x, y = res.y; return *this; }
Point& operator/=(const Point& t) {
Point res = Point(x, y) / t; x = res.x, y = res.y; return *this; }
friend Point operator+(const Point& a, const Point& b) { return Point(a.x + b.x, a.y + b.y); }
friend Point operator-(const Point& a, const Point& b) { return Point(a.x - b.x, a.y - b.y); }
friend Point operator*(const Point& a, const T &t) { return Point(a.x * t, a.y * t); }
friend Point operator*(const T &t ,const Point& a) { return Point(t * a.x, t * a.y); }
friend Point operator/(const Point& a, const T &t) { return Point(a.x / t, a.y / t); }
friend Point operator*(const Point& a, const Point& b) {
return Point(a.x * b.x - a.y * b.y, a.y * b.x + a.x * b.y); }
friend Point operator/(const Point& a, const Point& b) {
return Point(a * conj(b) / norm(b)); }
friend T int_norm(const Point& a) { return __gcd(a.x, a.y); }
friend T int_unit(const Point& a) { if (a == Point()) return a; return a / int_norm(a); }
friend T cross(const Point& a, const Point& b) { return a.x * b.y - a.y * b.x; }
friend T dot(const Point& a, const Point& b) { return a.x * b.x + a.y * b.y; }
friend T area(const Point& a, const Point& b, const Point& c) { return cross(b - a, c - a); }
// Returns conj(a) * b
friend Point rotation(const Point& a, const Point& b) { return Point(dot(a, b), cross(a, b)); }
friend bool same_dir(const Point& a, const Point& b) { return cross(a, b) == 0 && dot(a, b) > 0; }
// check if 180 <= s..t < 360
friend bool is_reflex(const Point& a, const Point& b) {
auto c = cross(a, b); return c ? (c < 0) : (dot(a, b) < 0); }
// operator < (s, t) for angles in [base, base+2pi)
friend bool angle_less(const Point& base, const Point& s, const Point& t) {
int r = is_reflex(base, s) - is_reflex(base, t);
return r ? (r < 0) : (0 < cross(s, t));
}
friend bool angle_cmp(const Point& base) {
return [base](const Point& s, const Point& t) { return angle_less(base, s, t); };
}
friend bool angle_cmp_center(const Point& center, const Point& dir) {
return [center, dir](const Point& s, const Point& t) -> bool {
return angle_less(dir, s - center, t - center); };
}
// is p in [s,t] taken ccw? 1/0/-1 for in/border/out
friend int angle_between(const Point& s, const Point& t, const Point& p) {
if (same_dir(p, s) || same_dir(p, t)) return 0;
return angle_less(s, p, t) ? 1 : -1;
}
};
namespace Geometry2D {
template <class T> int sign(T x) { return (x > 0) - (x < 0); }
template <class T> Point<T> reflect(const Point<T>& p, const Point<T>& a, const Point<T>& b) {
return a + conj((p - a) / (b - a)) * (b - a); }
template <class T> Point<T> foot( const Point<T>& p, const Point<T>& a, const Point<T>& b) {
return (p + reflect(p, a, b)) / (T) 2; }
template <class T> bool on_segment(Point<T> p, Point<T> a, Point<T> b) {
return area(a, b, p) == 0 && dot(p - a, p - b) <= 0; }
template <class T>
std::vector<Point<T>> segment_intersect(Point<T> a, Point<T> b, Point<T> c, Point<T> d) {
T x = area(a, b, c), y = area(a, b, d);
T X = area(c, d, a), Y = area(c, d, b);
if (sign(x) * sign(y) < 0 && sign(X) * sign(Y) < 0)
return {(d * x - c * y) / (x - y)};
std::set<Point<T>> s;
if (on_segment(a, c, d))
s.insert(a);
if (on_segment(b, c, d))
s.insert(b);
if (on_segment(c, a, b))
s.insert(c);
if (on_segment(d, a, b))
s.insert(d);
return {s.begin(), s.end()};
}
template <class T> Point<T> extension(Point<T> a, Point<T> b, Point<T> c, Point<T> d) {
T x = cross(a, b, c);
T y = cross(a, b, d);
return (d * x - c * y) / (x - y);
}
template <class T> std::pair<int, Point<T>> line_intersect(Point<T> a, Point<T> b, Point<T> c, Point<T> d) {
// returns -1 if infinitely, 0 if none, 1 if unique
if (cross(b - a, d - c) == 0)
return {-(cross(a, c, d) == 0), Point<T>()};
else
return {1, extend(a, b, c, d)};
}
template <class T> T line_dist(Point<T> p, Point<T> a, Point<T> b) {
return abs(area(p, a, b)) / abs(a - b); }
template <class T> T point_segment_dist(Point<T> p, Point<T> a, Point<T> b) {
if (dot(p - a, b - a) <= 0)
return abs(p - a);
if (dot(p - b, a - b) <= 0)
return abs(p - b);
return line_dist(p, a, b);
}
template <class T> T segment_segment_dist(Point<T> a, Point<T> b, Point<T> c, Point<T> d) {
std::vector<Point<T>> v = segment_intersect(a, b, c, d);
if (!v.empty())
return 0;
return std::min({point_segment_dist(a, c, d), point_segment_dist(b, c, d),
point_segment_dist(c, a, b), point_segment_dist(d, a, b)});
}
template <class T> std::pair<Point<T>, T> centroid_area(const std::vector<Point<T>> v) {
// pair of centroid and area, positive means CCW, negative means CW
Point<T> centroid(0, 0);
T area = 0;
for (int i = 0; i < (int)v.size(); i++) {
int j = (i + 1) % ((int)v.size());
T a = cross(v[i], v[j]);
centroid += a * (v[i] + v[j]);
area += a;
}
return {centroid / area / (T) 3, area / 2};
}
template<class T> int polygon_point(const std::vector<Point<T>>& p, Point<T> z) {
// returns -1 if outside, 0 if on, 1 if inside
int n = (int)p.size();
int ans = 0;
for (int i = 0; i < n; i++) {
Point<T> x = p[i], y = p[(i + 1) % n];
if (x.y > y.y)
std::swap(x, y);
if (on_segment(z, x, y))
return 0;
ans ^= (x.y <= z.y && y.y > z.y && area(z, x, y) > 0);
}
return ans ? 1 : -1;
}
} // Geometry2D
using P = Point<long long>;
using namespace Geometry2D;
int half(P x) {
return x.y != 0 ? sign(x.y) : -sign(x.x);
}
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
int n;
cin >> n;
vector<Point<long long>> p(n);
for (int i = 0; i < n; ++i) {
cin >> p[i];
}
sort(p.begin(), p.end(), [&](P a, P b) {
int A = half(a), B = half(b);
return A == B ? cross(a, b) > 0 : A < B;
});
for (int i = 0; i < n; ++i) {
cout << p[i].x << ' ' << p[i].y << '\n';
}
return 0;
}