This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/bitwise_xor_convolution"
#include <bits/stdc++.h>
#include <vector>
#include "../../library/set-function/walsh-hadamard-transform.hpp"
#include "../../library/modular-arithmetic/mod-int2.hpp"
using mi = Mint<998244353, 5>;
using namespace std;
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
int n;
cin >> n;
vector<mi> a(1 << n);
vector<mi> b(1 << n);
for (int i = 0; i < 1 << n; ++i) {
cin >> a[i];
}
for (int i = 0; i < 1 << n; ++i) {
cin >> b[i];
}
walsh_hadamard_transformation(a);
walsh_hadamard_transformation(b);
vector<mi> c(1 << n);
for (int i = 0; i < 1 << n; ++i) {
c[i] = a[i] * b[i];
}
walsh_hadamard_transformation(c, true);
for (int i = 0; i < 1 << n; ++i) {
cout << c[i] << ' ';
}
cout << '\n';
return 0;
}
#define PROBLEM "https://judge.yosupo.jp/problem/bitwise_xor_convolution"
#include <bits/stdc++.h>
template <class T>
void walsh_hadamard_transformation(std::vector<T>& f, bool inverse = false) {
int n = (int)f.size();
for (int i = 1; i < n; i <<= 1) {
for (int j = 0; j < n; ++j) {
if ((j & i) == 0) {
T x = f[j], y = f[j | i];
f[j] = x + y;
f[j | i] = x - y;
}
}
}
if (inverse) {
if constexpr(std::is_integral<T>::value) {
for (auto& x : f) x /= n;
} else {
T divide = T(1) / T(f.size());
for (auto& x : f) x *= divide;
}
}
}
// 5 is a root of both mods
template <int MOD, int RT> struct Mint {
static const int mod = MOD;
static constexpr Mint rt() { return RT; } // primitive root for FFT
static constexpr int md() { return MOD; } // primitive root for FFT
int v;
explicit operator int() const { return v; } // explicit -> don't silently convert to int
explicit operator bool() const { return v != 0; }
Mint() { v = 0; }
Mint(long long _v) { v = int((-MOD <= _v && _v < MOD) ? _v : _v % MOD); if (v < 0) v += MOD; }
friend bool operator==(const Mint& a, const Mint& b) { return a.v == b.v; }
friend bool operator!=(const Mint& a, const Mint& b) { return !(a == b); }
friend bool operator<(const Mint& a, const Mint& b) { return a.v < b.v; }
friend bool operator>(const Mint& a, const Mint& b) { return a.v > b.v; }
friend bool operator<=(const Mint& a, const Mint& b) { return a.v <= b.v; }
friend bool operator>=(const Mint& a, const Mint& b) { return a.v >= b.v; }
friend std::istream& operator >> (std::istream& in, Mint& a) {
long long x; std::cin >> x; a = Mint(x); return in; }
friend std::ostream& operator << (std::ostream& os, const Mint& a) { return os << a.v; }
Mint& operator+=(const Mint& m) {
if ((v += m.v) >= MOD) v -= MOD;
return *this; }
Mint& operator-=(const Mint& m) {
if ((v -= m.v) < 0) v += MOD;
return *this; }
Mint& operator*=(const Mint& m) {
v = (long long)v * m.v % MOD; return *this; }
Mint& operator/=(const Mint& m) { return (*this) *= inv(m); }
friend Mint pow(Mint a, long long p) {
Mint ans = 1; assert(p >= 0);
for (; p; p /= 2, a *= a) if (p & 1) ans *= a;
return ans;
}
friend Mint inv(const Mint& a) { assert(a.v != 0); return pow(a, MOD - 2); }
Mint operator-() const { return Mint(-v); }
Mint& operator++() { return *this += 1; }
Mint& operator--() { return *this -= 1; }
friend Mint operator+(Mint a, const Mint& b) { return a += b; }
friend Mint operator-(Mint a, const Mint& b) { return a -= b; }
friend Mint operator*(Mint a, const Mint& b) { return a *= b; }
friend Mint operator/(Mint a, const Mint& b) { return a /= b; }
};
using mi = Mint<998244353, 5>;
using namespace std;
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
int n;
cin >> n;
vector<mi> a(1 << n);
vector<mi> b(1 << n);
for (int i = 0; i < 1 << n; ++i) {
cin >> a[i];
}
for (int i = 0; i < 1 << n; ++i) {
cin >> b[i];
}
walsh_hadamard_transformation(a);
walsh_hadamard_transformation(b);
vector<mi> c(1 << n);
for (int i = 0; i < 1 << n; ++i) {
c[i] = a[i] * b[i];
}
walsh_hadamard_transformation(c, true);
for (int i = 0; i < 1 << n; ++i) {
cout << c[i] << ' ';
}
cout << '\n';
return 0;
}