This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://open.kattis.com/problems/convexhull"
#include "../../library/contest/template-minimal.hpp"
#include "../../library/geometry/convex-hull.hpp"
// kattis verified
int main() {
using namespace std;
using namespace ConvexHull;
ios_base::sync_with_stdio(false);
cin.tie(nullptr);
while (true) {
int n; cin >> n;
if (n == 0)
return 0;
vector<Point<int>> v(n);
for (int i = 0; i < n; i++)
cin >> v[i].x >> v[i].y;
auto hull = convex_hull(v);
cout << (int)hull.size() << '\n';
for (auto &p : hull)
cout << p.x << " " << p.y << '\n';
}
return 0;
}
#define PROBLEM "https://open.kattis.com/problems/convexhull"
#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <chrono>
#include <cmath>
#include <complex>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <deque>
#include <iostream>
#include <iomanip>
#include <list>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <stack>
#include <string>
#include <unordered_map>
#include <vector>
using namespace std;
template <typename T> struct Point {
public:
T x, y;
Point() : x(0), y(0) {}
Point(T x_, T y_) : x(x_), y(y_) {}
template <typename U> explicit Point(const Point<U>& p) : x(p.x), y(p.y) {}
Point(const std::pair<T, T>& p) : x(p.first), y(p.second) {}
Point(const std::complex<T>& p) : x(real(p)), y(imag(p)) {}
explicit operator std::pair<T, T>() const { return std::pair<T, T>(x, y); }
explicit operator std::complex<T>() const { return std::complex<T>(x, y); }
friend std::ostream& operator<<(std::ostream &o, const Point& p) {
return o << '(' << p.x << ',' << p.y << ')'; }
friend std::istream& operator>>(std::istream &i, Point& p) { return i >> p.x >> p.y; }
friend bool operator==(const Point& a, const Point& b) { return a.x == b.x && a.y == b.y; }
friend bool operator!=(const Point& a, const Point& b) { return !(a == b); }
friend bool operator<(const Point& a, const Point& b) {
return (a.x != b.x ? a.x < b.x : a.y < b.y); }
friend T norm(const Point& a) { return a.x * a.x + a.y * a.y; }
friend T abs(const Point& p) { return std::hypot(p.x, p.y); }
friend T unit(const Point& a) { if (a == Point()) return a; return a / abs(a); }
friend Point conj(const Point& a) { return Point(a.x, -a.y); }
friend Point perp(const Point& a) { return Point(-a.y, a.x); }
friend long double arg(const Point& p) { return atan2(p.y, p.x); }
friend Point dir(long double angle) { return Point(cos(angle), sin(angle)); }
Point& operator+=(const Point& p) { x += p.x, y += p.y; return *this; }
Point& operator-=(const Point& p) { x -= p.x, y -= p.y; return *this; }
Point& operator*=(const T &t) { x *= t, y *= t; return *this; }
Point& operator/=(const T &t) { x /= t, y /= t; return *this; }
Point& operator*=(const Point& t) {
Point res = Point(x, y) * t; x = res.x, y = res.y; return *this; }
Point& operator/=(const Point& t) {
Point res = Point(x, y) / t; x = res.x, y = res.y; return *this; }
friend Point operator+(const Point& a, const Point& b) { return Point(a.x + b.x, a.y + b.y); }
friend Point operator-(const Point& a, const Point& b) { return Point(a.x - b.x, a.y - b.y); }
friend Point operator*(const Point& a, const T &t) { return Point(a.x * t, a.y * t); }
friend Point operator*(const T &t ,const Point& a) { return Point(t * a.x, t * a.y); }
friend Point operator/(const Point& a, const T &t) { return Point(a.x / t, a.y / t); }
friend Point operator*(const Point& a, const Point& b) {
return Point(a.x * b.x - a.y * b.y, a.y * b.x + a.x * b.y); }
friend Point operator/(const Point& a, const Point& b) {
return Point(a * conj(b) / norm(b)); }
friend T int_norm(const Point& a) { return __gcd(a.x, a.y); }
friend T int_unit(const Point& a) { if (a == Point()) return a; return a / int_norm(a); }
friend T cross(const Point& a, const Point& b) { return a.x * b.y - a.y * b.x; }
friend T dot(const Point& a, const Point& b) { return a.x * b.x + a.y * b.y; }
friend T area(const Point& a, const Point& b, const Point& c) { return cross(b - a, c - a); }
// Returns conj(a) * b
friend Point rotation(const Point& a, const Point& b) { return Point(dot(a, b), cross(a, b)); }
friend bool same_dir(const Point& a, const Point& b) { return cross(a, b) == 0 && dot(a, b) > 0; }
// check if 180 <= s..t < 360
friend bool is_reflex(const Point& a, const Point& b) {
auto c = cross(a, b); return c ? (c < 0) : (dot(a, b) < 0); }
// operator < (s, t) for angles in [base, base+2pi)
friend bool angle_less(const Point& base, const Point& s, const Point& t) {
int r = is_reflex(base, s) - is_reflex(base, t);
return r ? (r < 0) : (0 < cross(s, t));
}
friend bool angle_cmp(const Point& base) {
return [base](const Point& s, const Point& t) { return angle_less(base, s, t); };
}
friend bool angle_cmp_center(const Point& center, const Point& dir) {
return [center, dir](const Point& s, const Point& t) -> bool {
return angle_less(dir, s - center, t - center); };
}
// is p in [s,t] taken ccw? 1/0/-1 for in/border/out
friend int angle_between(const Point& s, const Point& t, const Point& p) {
if (same_dir(p, s) || same_dir(p, t)) return 0;
return angle_less(s, p, t) ? 1 : -1;
}
};
namespace ConvexHull {
template <class T>
std::pair<std::vector<int>, std::vector<int>> upper_lower_hull(const std::vector<Point<T>>& v) {
std::vector<int> p((int)v.size()), upper, lower;
iota(p.begin(), p.end(), 0);
sort(p.begin(), p.end(), [&v](int a, int b) { return v[a] < v[b]; });
for (int i : p) {
while ((int)upper.size() > 1 &&
area(v[upper[(int)upper.size() - 2]], v[upper.back()], v[i]) >= 0)
upper.pop_back();
upper.push_back(i);
while ((int)lower.size() > 1 &&
area(v[lower[(int)lower.size() - 2]], v[lower.back()], v[i]) <= 0)
lower.pop_back();
lower.push_back(i);
}
return {upper, lower};
}
template <class T> std::vector<int> hull_index(const std::vector<Point<T>>& v) {
std::vector<int> upper, lower;
tie(upper, lower) = upper_lower_hull(v);
if ((int)lower.size() <= 1)
return lower;
if (v[lower[0]] == v[lower[1]])
return {0};
lower.insert(lower.end(), 1 + upper.rbegin(), upper.rend() - 1);
return lower;
}
template <class T> std::vector<Point<T>> convex_hull(const std::vector<Point<T>>& v) {
std::vector<int> w = hull_index(v);
std::vector<Point<T>> res;
for (auto& t : w)
res.push_back(v[t]);
return res;
}
} // ConvexHull
// kattis verified
int main() {
using namespace std;
using namespace ConvexHull;
ios_base::sync_with_stdio(false);
cin.tie(nullptr);
while (true) {
int n; cin >> n;
if (n == 0)
return 0;
vector<Point<int>> v(n);
for (int i = 0; i < n; i++)
cin >> v[i].x >> v[i].y;
auto hull = convex_hull(v);
cout << (int)hull.size() << '\n';
for (auto &p : hull)
cout << p.x << " " << p.y << '\n';
}
return 0;
}