This documentation is automatically generated by online-judge-tools/verification-helper
#include "library/data-structures/1d-range-queries/lazy-segment-tree.hpp"
#pragma once
template <class T>
struct LazySeg {
std::vector<T> sum, lazy;
int sz;
LazySeg() = default;
LazySeg(int sz) { init(sz); }
void init(int sz_) {
sz = 1;
while (sz < sz_) sz *= 2;
sum.assign(2 * sz, 0);
lazy.assign(2 * sz, 0);
}
void push(int ind, int L, int R) {
sum[ind] += (R - L + 1) * lazy[ind];
if (L != R) {
lazy[2 * ind] += lazy[ind];
lazy[2 * ind + 1] += lazy[ind];
}
lazy[ind] = 0;
}
void pull(int ind) { sum[ind] = sum[2 * ind] + sum[2 * ind + 1]; }
void build() {
for (int i = sz - 1; i >= 1; i--) {
pull(i);
}
}
void upd(int lo, int hi, T inc, int ind = 1, int L = 0, int R = -1) {
if (R == -1) R += sz;
push(ind, L, R);
if (hi < L || R < lo) return;
if (lo <= L && R <= hi) {
lazy[ind] = inc;
push(ind, L, R);
return;
}
int M = (L + R) / 2;
upd(lo, hi, inc, 2 * ind, L, M);
upd(lo, hi, inc, 2 * ind + 1, M + 1, R);
pull(ind);
}
T qsum(int lo, int hi, int ind = 1, int L = 0, int R = -1) {
if (R == -1) R += sz;
push(ind, L, R);
if (lo > R || L > hi) return 0;
if (lo <= L && R <= hi) return sum[ind];
int M = (L + R) / 2;
return qsum(lo, hi, 2 * ind, L, M) + qsum(lo, hi, 2 * ind + 1, M + 1, R);
}
};
template <class T>
struct LazySeg {
std::vector<T> sum, lazy;
int sz;
LazySeg() = default;
LazySeg(int sz) { init(sz); }
void init(int sz_) {
sz = 1;
while (sz < sz_) sz *= 2;
sum.assign(2 * sz, 0);
lazy.assign(2 * sz, 0);
}
void push(int ind, int L, int R) {
sum[ind] += (R - L + 1) * lazy[ind];
if (L != R) {
lazy[2 * ind] += lazy[ind];
lazy[2 * ind + 1] += lazy[ind];
}
lazy[ind] = 0;
}
void pull(int ind) { sum[ind] = sum[2 * ind] + sum[2 * ind + 1]; }
void build() {
for (int i = sz - 1; i >= 1; i--) {
pull(i);
}
}
void upd(int lo, int hi, T inc, int ind = 1, int L = 0, int R = -1) {
if (R == -1) R += sz;
push(ind, L, R);
if (hi < L || R < lo) return;
if (lo <= L && R <= hi) {
lazy[ind] = inc;
push(ind, L, R);
return;
}
int M = (L + R) / 2;
upd(lo, hi, inc, 2 * ind, L, M);
upd(lo, hi, inc, 2 * ind + 1, M + 1, R);
pull(ind);
}
T qsum(int lo, int hi, int ind = 1, int L = 0, int R = -1) {
if (R == -1) R += sz;
push(ind, L, R);
if (lo > R || L > hi) return 0;
if (lo <= L && R <= hi) return sum[ind];
int M = (L + R) / 2;
return qsum(lo, hi, 2 * ind, L, M) + qsum(lo, hi, 2 * ind + 1, M + 1, R);
}
};